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Abstract

A numerical methodology for analysis of plates resting on tensionless elastic foundations, described either by the

Winkler model or as an elastic half-space, is presented in this paper. The contact surface is assumed unbonded and

frictionless. The ®nite element method is used to discretize the plate and foundation. To overcome the di�culties in

solving the plate±foundation equilibrium equations together with the inequality constraints due to the frictionless

unilateral contact condition, a variational formulation equivalent to these equations is presented from which three

alternative linear complementary problems (LCP) are derived and solved by LemkeÕs complementary pivoting algo-

rithm. In the ®rst formulation, the LCP variables are the plate displacements and the elastic foundation reaction, in the

second, the LCP is derived in terms of the elastic foundation reaction and, in the third formulation, the variables are the

elastic foundation displacements and the gap between the bodies. Once the LCP is solved the no-contact regions where

the plate lifts up away from the foundation and the sub-grade reaction, as well as the plate displacements and stresses,

can be easily obtained. The methodology is illustrated by three examples and the results are compared with existing

analytical and numerical results found in the literature. Ó 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

This paper presents a numerical methodology for estimating the structural behavior of plates resting on
tensionless elastic foundations. The analyses of plates on elastic foundations have been motivated by the
need in engineering to design, for example, mat and raft foundations, pavement slabs of roads and air®eld,
¯oor systems of industrial yards and ¯exible column footings. These problems are usually analyzed by
assuming that the foundation reacts in compression as well as in tension. However, in many practical
situations, this assumption is questionable. Some supporting media cannot sometimes provide tensile re-
action and, under certain conditions, some portions of the plate may lift-o�. This is, for example, the case of
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plates resting on soils lacking both adhesive and cohesive properties. In these circumstances, if the uni-
lateral character of the foundation is not taken into account, the engineer may incur considerable error, as
shown in this paper.

The unbonded frictionless contact problem of plates resting on a tensionless foundation is complicated
because the location and extent of the contact regions are not known at the outset. Since the stresses and
deformations of the plate and foundation depend on the contact area and therefore on its unknown
boundaries, these boundaries are, along with other mechanical quantities, part of the solution, being the
primary unknowns of the problem. So, even for cases involving linear foundation models and linear plate
theories, the problem is non-linear by virtue of unilateral constraints and therefore needs to be solved it-
eratively.

A critical step in the analysis of contact problems is the selection of a numerical methodology to deal
with unilateral contact constraints. Basically there are three major numerical approaches for this problem,
namely the Lagrange multiplier method, the penalty method and mathematical programming methods.
This last alternative enables one to solve the contact problem by directly minimizing the potential energy
containing explicitly moving boundary parameters and the associated inequality constraints and thus
maintaining the original mathematical characteristics of the problem. Some of the optimizationÕs tech-
niques used for the contact problem are: linear and quadratic programming, recursive quadratic pro-
gramming or, alternatively, methods for the solution of linear complementary problems such as LemkeÕs or
DantzigÕs algorithms.

The bending of plates resting on elastic foundations has been the subject of numerous investigations in
the past. The ®rst attempts to solve the problem of a plate on tensionless foundation include, among other,
the works of Weitsman (1969, 1970). These works were followed by the contributions by Conry and Seireg
(1971), Svec and McNeice (1972) and Svec (1974). Gladwell and Iyer (1974) studied the frictionless uni-
lateral contact problem between an in®nite half-space and a circular plate, subjected to its own weight plus
a distributed load on a central circular area. Chand et al. (1976) formulated the unilateral contact problem
between two elastic bodies as a quadratic programming problem and showed that the solution of a contact
problem, if feasible, is unique and can be easily found by the modi®ed simplex method of quadratic
programming. Variational formulations for the solution of unilateral contact problems were discussed by
Ascione and Grimaldi (1984) and results for a circular plate were presented. In one of the formulations
proposed in this paper they arrive, after using the FEM to discretize the plate and foundation and Kuhn±
Tucker conditions (Luenberger, 1973), at a linear complementary problem (LCP) which is solved through
the use of DantzigÕs algorithms (Cottle and Dantzig, 1968). Ascione and Olivito (1985) presented a for-
mulation based on the penalty method to solve the unilateral contact problem between a rectangular plate
and an in®nite half-space. Rajapakse and Selvadurai (1986) made a comparative study on the e�ciency of
some plate ®nite elements in the analysis of plates resting on an in®nite half-space.

In the eighties, works employing the boundary element method (BEM) for the analysis of contact
problems began to appear. Puttonen and Varpasuo (1986) examined the applicability of the BEM to the
analysis of plates on a Winkler or Pasternak foundation and Katsikadelis and Kallivokas (1986) developed
a procedure for the analysis of slender plates submitted to di�erent loading conditions in contact with a
Pasternak foundation. More recently, Hu and Hartley (1994) used the BEM to analyze the behavior of thin
plates on an elastic half-space.

Meanwhile, Li and Dempsey (1988) presented a solution for the frictionless unilateral contact problem
between a square plate subjected to a vertical load and an in®nite half-space or a Winkler foundation. Also
in 1988, two analytical works on the frictionless unilateral contact problem appeared. In one of them Celep
(1988), using GalerkinÕs method, studied the behavior of rectangular plates submitted to concentrated and
distributed loads in contact with a frictionless and tensionless Winkler foundation. In the other Celep et al.
(1988), analyzed the unilateral contact problem between a circular plate and an elastic foundation con-
stituted by discreet springs, using RitzÕs method.

2084 A.R.D. Silva et al. / International Journal of Solids and Structures 38 (2001) 2083±2100



More modern attempts to solve contact problems include the works of Bj�orkman et al. (1995), who used
sequential quadratic programming (SQP) for the study of geometrically non-linear frictionless contact
problems, and Silveira and Goncßalves (1997), who presented a numerical methodology for the geometri-
cally non-linear analysis of slender structural elements with unilateral constraints combining a linear
complementary problem formulation with arc-length techniques. Also recently, Akbarov and Kocat�urk
(1997) used the GalerkinÕs method to study the bending of anisotropic plates on a tensionless foundation.

The present work adds a new contribution to this ®eld by providing some alternative formulations for
general-purpose analysis of plates resting unilaterally on an elastic foundation. In this analysis, the plate
and the foundation are treated as two separated elastic bodies in unilateral contact at the interface. The
plate is described either by Kirchho� or Reissner±MindlinÕs plate theory and the foundation is considered
as a Winkler foundation or an elastic half-space. The plate and the foundation are discretized using the
®nite element method. To overcome the di�culties in solving the plate±foundation equilibrium equations
together with the inequality constraints due to the frictionless unilateral contact condition, a variational
formulation equivalent to these equations is presented from which three alternative LCP are derived and
solved by LemkeÕs complementary pivoting algorithm. In the ®rst formulation, the LCP variables are the
plate displacements and the elastic foundation reaction, in the second, the LCP is derived in terms of the
elastic foundation reaction and, in the third formulation, the variables are the elastic foundation dis-
placements and the gap between the bodies. Once the LCP is solved the no-contact regions where the plate
lifts up away from the foundation and the subgrade reaction, as well as the plate displacements and stresses,
can be easily obtained. Numerical examples involving plates under di�erent loading conditions are pre-
sented and the results are compared with existing results to demonstrate the validity and e�ectiveness of the
formulations derived in this paper.

2. Problem formulation

Consider a structural system consisting of an elastic plate and a tensionless elastic foundation. The plate
is de®ned as a solid elastic continuum which occupies a domain V, limited by three di�erent regular sur-
faces: Sc, Su and Sf , where Su is the area where displacements are prescribed, Sf is the area where the surface
forces are prescribed and Sc is the surface where contact may occur. For the plate, the equilibrium
equations, the strain±displacement relations and the constitutive equations are given, respectively, by

rij;j � 0; �1�

eij � 1
2
�ui;j � uj;i�; �2�

rij � Cijklekl; �3�
where rij are the Cauchy stress components, eij are the in®nitesimal strain components, ui are the dis-
placements and Cijkl are the material parameters. In this paper the plate is analyzed by either the Kirchho�
or Reissner±Mindlin plate theory.

The elastic foundation is described by

rb � Cbub �4�
where ub and rb are the displacement and reaction of the elastic foundation, respectively, and Cb is the
foundation modulus.

For the structural system studied here, the following boundary conditions must be satis®ed.

ui � �ui on Su; �5�
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Fi � rijnj on Sf ; �6�

u � ub ÿ ui P 0 on Sc; �7�
where, ui is the de¯ection of the plate orthogonal to the foundation and u is the gap between the plate and
the foundation in the potential contact region Sc. Inequality (7) is the compatibility condition that rep-
resents the impenetrability between the bodies. When u � 0, there is contact and rb P 0. On the other hand,
when there is no contact, u P 0 and rb � 0.

So, the conditions that de®ne in a complete way the contact as being unilateral are given by the in-
equality

rb P 0 �8�
and, the following complementarity relationship between u and rbZ

Sc

rbudSc � 0: �9�

In these equations compressive reactions are assumed to be positive.
The problem unknowns can be obtained by solving Eq. (1) together with boundary conditions (5) and

(6), inequalities (7) and (8) and the complementarity condition (9). The non-linearity due to the unilateral
constraints makes it di�cult to solve the contact problem directly. For this reason, an equivalent mini-
mization problem is formulated which is particularly suitable for numerical analysis. It can be shown that
the optimizationÕs problem (Joo and Kwak, 1986; Silveira, 1995)

Min : J�u; ub� �10�

s:t: :ÿu6 0; on Sc �11�
where,

J � 1

2

Z
V

Cijklekleij dV � 1

2

Z
Sc

Cbu2
bdSc ÿ

Z
Sf

Fiui dSf �12�

is equivalent to the contact problem described above.
Based on these equations, three alternative LCP are proposed for the numerical analysis of plates resting

on a tensionless foundation in the following sections.

2.1. Formulation 1

According to Ascione and Grimaldi (1984), restrictions (7)±(9) can be substituted by the variational
inequalityZ

Sc

rudSc P 0; �13�

where r belongs to the positive cone �K , in which the admissible reactions rb are the elements

�K � rb 2 Y 0;
Z

Sc

rbwdSc

�
P 0; 8w 2 Y ; w P 0

�
�14�

and Y0 and Y are the vectorial spaces that contain the solutions to rb and u, respectively. The comple-
mentary condition (9) is satis®ed when r � rb.

Then, the contact constraint can be eliminated from the analysis, by writing
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J1 � 1

2

Z
V

Cijklekleij dV � 1

2

Z
Sc

Cbu2
b dSc ÿ

Z
Sc

rbudSc ÿ
Z

Sf

Fiui dSf : �15�

The ®rst variation of J1, after eliminating ub from the previous equation by way of relation (7), is given
by the following variational inequality (see Eq. (13)):

dJ1 �
Z

V
Cijklekl deij dV �

Z
Sc

Cb�u� u�dudSc �
Z

Sc

Cb�u� � u� ÿ rb�dudSc ÿ
Z

Sc

udrb dSc

ÿ
Z

Sf

Fidui dSf 6 0: �16�

Elimination of u from the Eq. (16), by use of Eqs. (4) and (7), leads to a variational inequality in terms of
u, e, rb only, which corresponds to the ®rst variation of the following integral:

J1 � 1

2

Z
V

Cijklekleij dV ÿ 1

2

Z
Sc

Dbr2
b dSc �

Z
Sc

rbudSc ÿ
Z

Sf

Fiui dSf ; �17�

where Db � Cÿ1
b . The variables u, e, rb must be obtained so that the ®rst variation of the functional J1

satis®es the inequality dJ1�u; rb�6 0.
Now, using the ®nite element method, one can assume that, for a generic plate element, the displacement

®eld within the element, u, is related to the nodal displacements u by

u � Nu; �18�
where N is the usual interpolation functions matrix. For a generic elastic foundation element, the com-
pressive reaction is related to its nodal values by

rb � Hbrb; �19�
where Hb is the matrix that contains the interpolation functions that describe the behavior of the elastic
base.

From these de®nitions and adding the contributions of each ®nite element, one arrives at the discretized
functional of the problem in the global form

�J1 � 1

2
uTKuÿ 1

2
rT

b Trb � rT
b Auÿ uTR �20�

where R is the nodal load vector, K is the sti�ness matrix, A is the joining matrix between the structure and
the elastic foundation, de®ned by

A �
X

mc

Z
Sc

HT
b NdSc �21�

and T is the ¯exibility matrix of the elastic foundation which can be written as

T �
X

mc

Z
Sc

HT
b DbHb dSc: �22�

Here mc is the number of elements of the contact region.
After the ®rst variation of Eq. (20), one arrives at the following LCP in terms of the plate displacements

and foundation reaction (Ascione and Grimaldi, 1984; Silveira, 1995):

Ku� ATrb ÿ R � 0; �23�

Auÿ Trb6 0; �24a�
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rb P 0; �24b�

�Auÿ Trb�Trb � 0: �24c�
The solution of the Eq. (23), considering the constraints (24), can be achieved through the use of

mathematical programming methods, in particular, pivoting techniques developed for complementary
problems (Cottle and Dantzig, 1968; Lemke, 1968). However, ®rst it is necessary to reduce the previous
relations to a standard LCP form. This can be obtained through the use of the following de®nitions:

u � u� � uÿ; z1 � Trb ÿ Au; z2 � Ku� ATrb ÿ R; z3 � ÿz2; �25�
where u�P 0; uÿP 0 are the positive and negative parts of the vector u (Fletcher, 1981).

Using these new variables, it is possible to write Eqs. (23) and 24(a±c) in the following form:

w � q�Mz; �26�

w P 0; �27a�

z P 0; �27b�

wTz � 0 �27c�
with

M �
K ÿK AT

ÿK K ÿAT

ÿA A T

24 35; q �
ÿR

R

0

8<:
9=;; z �

u�

uÿ

rb

8<:
9=;ew �

z2

z3

z1

8<:
9=;: �28�

Eq. (26) and constraints (27) correspond to a standard linear complementary problem which is solved
here by LemkeÕs algorithm.

2.2. Formulation 2

If the sti�ness matrix in Eq. (23) is positive de®nite, it is possible to establish the following relationship
between u and rb:

u � Kÿ1�Rÿ ATrb�: �29�
Substituting Eq. (29) in Eq. (23), one arrives at a variational expression that is a function of the nodal

values of the base reaction rb only

�J2 � ÿ1
2
rT

b Prb � rT
b Hÿ s: �30�

Here P is a symmetric positive de®nite matrix, H is a vector and s is a constant which are de®ned as

P � AKÿ1AT � T; H � AKÿ1R; s � 1
2
RTKÿ1R: �31�

Eq. (30), with the foundation reaction constraint condition, characterizes a quadratic programming
problem. Again one can derive from this formulation a standard LCP similar to the one described by Eqs.
(26) and (27), considering now, M � P, q � ÿH, z � rb and w as the Lagrange multiplier introduced in the
analysis to represent the impenetrability condition between the bodies. After the calculation of rb, u can be
obtained from Eq. (29).
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2.3. Formulation 3

In this third formulation the LCP is written in terms of the nodal variables in the contact region, that is,
the base displacements and the gap between the two bodies.

Discretizing Eq. (12) by the use of the FEM and adding the contributions of each ®nite element, one
arrives at the discretized functional of the problem in the global form

J1 � 1
2
uTKu� 1

2
uT

b Kbub ÿ uTR: �32�
The ®rst variation of Eq. (32) with respect to the nodal values of u and ub, leads to the equilibrium

equation

Ku� Kbub� R: �33�
After some algebraic manipulation, Eq. (33) can be rewritten as

w � q�Mz; �34�
where M � �K� Kb�ÿ1

K; q � �K� Kb�ÿ1
R; z � ub ÿ u and w � ub.

Eq. (34) together with the constraints

w P 0; �35a�

z P 0; �35b�

wTz � 0; �35c�
de®nes again a standard LCP.

It should be pointed out that the order of the matrices and vectors in formulations 2 and 3 are practically
the same. But, in order to obtain Eqs. (34) and (35) substructuring techniques and static condensation are
necessary.

3. Examples

In this section three examples are presented in order to verify the e�ciency and reliability of the for-
mulations developed in this work.

3.1. Supported continuous beam on a Winkler tensionless elastic foundation

The ®rst numerical example, used to test formulations 1±3, is shown in Fig. 1(a). It consists of a simply
supported beam, modeled as a long plate resting on a Winkler foundation, and subjected to concentrated
moments (M� 100) on the edges. Due to the loading conditions, a non-contact region will appear near the
right edge.

To model the structural system (plate and foundation) 20 isoparametric ®nite elements with eight nodes
each were used as shown in Fig. 1(b). The plate elements were derived from the Reissner±Mindlin theory.
The elastic foundation reaction is interpolated using the nodal points of the vertices of the element. The
beam dimensions are: a � 10, b � 1:0 and t � 0:4, the YoungÕs modulus and PoissonÕs ratio of the plate
material are, respectively, 106 and 0.0 and, the foundation sti�ness parameter K is taken as 71.68 (¯exible
foundation).

Figs. 2 and 3 show, respectively, the variation of the de¯ection and base reaction along the beam axis.
As observed, all formulations give practically the same results and they are in good agreement with the
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analytical modal solution obtained by Silveira and Goncßalves (1993) speci®cally for this problem. To
compare the e�ciency of the proposed formulations, the computing time for each LCP is shown in Table 1
together with the order of matrix M in each LCP. Clearly formulations 2 and 3 are more e�cient in terms of
computing time than formulation (1), having approximately the same performance. One of the main
reasons, as observed in Table 1, is the order of the matrices in each formulation. In the other numerical
experiments presented in this paper, similar results were observed. On the other hand the second formu-
lation seems to be more robust numerically and no numerical problem was experienced in this work when

Fig. 1. (a) Continuum plate on Winkler tensionless elastic foundation and (b) structural system model.

Fig. 2. Deformed shape of the plate.
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solving PLC-2 by LemkeÕs algorithm. In the other two cases in some experiments numerical di�culties were
observed. These di�culties were mainly due to the sensitivity of LemkeÕs algorithm to the relative mag-
nitude of the elements of matrix M. A possible solution is to choose the problems units in such a way that
all elements in the LCP are of comparable magnitude.

The in¯uence of the foundation sti�ness parameter K on the behaviour of the plate is now analyzed. In
Fig. 4 the de¯ection along the beam axis is given for di�erent values of the foundation modulus. As one can
observe, the area of contact region (and the corresponding displacements) decreases steadily as K increases,
while the displacements of the non-contact region increases. The dependence of the contact area on the
foundation sti�ness is one of the main characteristics of tensionless foundation as compared with the
conventional foundation.

Finally, Fig. 5 compares the results for the lateral de¯ection of a plate on a foundation with K � 7168
with those obtained for the same plate without foundation and with a foundation that reacts in com-
pression as well as in tension. These results show clearly that there is for relatively sti� foundations a
marked di�erence between the displacements of the tensionless and the conventional foundation models. As
a consequence, considerable error may result if the unilateral character of the foundation is not taken into
account in the analysis.

3.2. Slender plate on an elastic half-space

In this example a Kirchho� square plate freely resting on an in®nite half-space is considered. The
structural model is shown in Fig. 6(a). For comparison purposes, in the presentation of the results, the
following foundation/plate relative sti�ness parameter

Fig. 3. Contact pressure distribution.

Table 1

Computing times for solving each LCP and matrix size

Formulation 1 Formulation 2 Formulation 3

Time (s) 126 9 3

Order of matrix M 632� 632 38� 38 38� 38
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c � pEba3

D�1ÿ m2
b�

�36�

de®ned by Gorbunov-Possadov and Serebrjanyi (1961) for a rectangular plate and used by Hu and Hartley
(1994), is used here.

According to these authors, a square plate can be considered rigid when c6 8.
The associated displacement parameter given by these authors for a rigid square plate is

Fig. 5. Plate deformation pattern (K � 7168).

Fig. 4. Deformed pro®les of the plate for several values of the foundation sti�ness K.
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Wr � 0:913�1ÿ m2
b�P

2aEb

�37�

where P is the magnitude of the total vertical load.
In this example, the structural system is modeled with 36 ®nite elements as shown in Fig. 6(b). Due to

symmetry only 1/4 of the plate is analyzed. The value of the PoissonÕs ratio for both plate and the half-space
is taken as 0.15.

First a square plate subjected to a uniformly distributed load q is analyzed and the results are compared
with those obtained by Hu and Hartley (1994) using the boundary element method. In this case P in Eq.
(37) is the resultant of the distributed load (4a2q). In Fig. 7 the variation of the de¯ection of the plate along
the symmetry axis x is shown for selected values of the sti�ness parameter c. Here the de¯ection is nor-
malized with respect to Wr and the coordinate x is divided by a. As observed by Hu and Hartley (1994), the
plate displacement decreases as c decreases and approaches a straight line for low values of c (nearly rigid
plate or soft foundation) and the plate moves vertically as a rigid body with w practically equal to the
reference value Wr. For sti�er foundations or more ¯exible plates (large c) the plate deforms noticeably. For
any value of c the plate is completely in contact with the elastic foundation and the displacement at the
boundary (x=a � �1) tends to the reference value Wr. The corresponding distribution of the contact
pressure along the plate central axis for each value of the sti�ness parameter c is shown in Fig. 8. Finally in
Table 2 the value of the moment Mx in the plate center is presented for selected values of c. In all the cases
analyzed here the results compare well with those obtain by Hu and Hartley (1994).

In Figs. 9 and 10 and in Table 3, the results for central de¯ection, base reaction and moment My along
the x axis on the plate edge are shown for increasing values of the sti�ness parameter c for a plate under a
concentrated load acting on the center of the plate. The results are for the central axis of the plate. These
results are again compared with the numerical results obtained by Hu and Hartley (1994).

As observed if Fig. 10, c � 0:03 correspond practically to a rigid plate. As c increases, the base reaction
increases in the central area and when c approaches 300 the plate edge loses contact with the foundation.

Fig. 6. (a) Slender plate on an elastic half-space and (b) system structural model.
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For higher values of c the contact region decreases steadily and, since the applied load remains the same, in
order to maintain the equilibrium, the foundation reaction increases substantially. At the same time, the
uplift along the edges becomes more pronounced. Again the results illustrates the marked di�erence be-
tween the bonded and unbonded foundation models.

Fig. 8. Distribution of the foundation reaction ± uniformly distributed load.

Fig. 7. De¯ections along the centerline of the uniformly loaded plate.
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3.3. Rectangular plates resting on Winkler tensionless elastic foundation

Fig. 11(a) shows the geometry of the plate used in this example. It is a square plate of ¯exural sti�ness D
with free boundaries and in contact with a tensionless Winkler foundation of sti�ness K. The plate is
submitted to a concentrated load acting at a generic point (Xp, Yp). For comparison purposes, the following
dimensionless quantities are used in the example:

k � K4
a

D
; p � Pa

D
; xp � Xp

a
; yp � Yp

a
: �38�

The results in Figs. 12 and 13 were obtained using the ®nite element mesh (half of the plate, only)
presented in Fig. 11(b). Fifty isoparametric ®nite elements with eight nodal points and MindlinÕs plate
theory were used in the analysis. In Fig. 11(b) are also shown the adopted boundary conditions. These

Fig. 9. Displacement pro®les for di�erent values of sti�ness parameter c. Plate under concentrated load.

Table 2

Moments in the plate center ± distributed load q

c Mx=P

Present work Hu and Hartley (1994)

3.016 0.0221 0.0215

30.16 0.0147 0.0143

3016 0.0002 0.0002
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results are compared with those obtained by Celep (1988) using the Galerkin method. The plate geometry
and material properties are identical to those given by Celep: K � 1000 and m � 0:25 and, also, E � 10,
t � 0:018 and 2a � 1:0.

Fig. 12 shows the curves that separates the contact and the non-contact regions of the plate subjected to
a concentrated load at di�erent xp positions and yp � 0:0 while Fig. 13 shows the variation of the de¯ection
of the plate along the x axis for the same load positions. When the load is close to the center of the plate
(xp � 0) the contact curve is practically a circle having a non-dimensional radius r � 0:48, that is close to
the result found by Celep and, also by Akbarov and Kocat�urk (1997) (r � 0:49). It was also found for the
non-dimensional relationship k1=4r � 2:72. This is also close to the value obtained by Celep (k1=4r � 2:76).
With the Winkler foundation replaced by an elastic half space, Weitsman (1970) obtained for a weightless
plate of in®nite extent k1=4r � 2:85.

As observed in Figs. 12 and 14(a±d), the contact curve experiences a translation as the load moves away
from the center of the plate along the x axis. Close to the edge of the plate, the contact area changes its
shape and decreases rapidly, while the lift-o� displacements increase at a similar rate.

Fig. 10. Base reaction ± concentrated load.

Table 3

Moment My Acting on the plate edge (x axis) ± concentrated load

c My=P

Present work Hu and Hartley (1994)

3.016 0.073 0.075

30.16 0.042 0.043

3016 0.012 0.012
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Fig. 11. (a) Rectangular plates resting on tensionless elastic foundation and (b) structural system model.

Fig. 12. Boundary curves that separate the contact and non-contact regions.
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4. Conclusions

The equilibrium analysis of the plates with unilateral contact constraints was studied in this paper by the
use of the ®nite element method together with mathematical programming techniques. The use of math-
ematical programming techniques seems to be an e�cient form of treatment of the unilateral constraints,
since it allows the contact problem to be treated directly as a minimization problem involving the energy
functional and the original variables of the problem with inequality constraints. Based on this variational
formulation, three alternative linear complementary problems were formulated for the numerical analysis
of plates resting on an elastic foundation: in the ®rst formulation, the LCP variables are the plate dis-
placements and the elastic foundation reaction, in the second, the LCP is written in terms of the elastic
foundation reaction and, in the third formulation, the variables are the elastic foundation displacements
and the gap between the bodies. These LCP were solved by the use of LemkeÕs algorithm. A comprehensive
parametric study of the dominant parameters (foundation sti�ness, sub-grade reaction, contact region, etc.)
was carried out through numerical examples. The obtained results compare well with some analytical and
numerical results found in literature. These examples validate the formulations and proposed numerical
methodologies and clari®es the main characteristics of this type of structural problem. These results also
show that for this class of problems considerable error may result if the unilateral character of the foun-
dation is not taken into account in the analysis. When a partial contact occurs, the displacements in the lift-
o� region are larger in this case, while, in order to maintain equilibrium, the reaction in the contact region
increases substantially, causing a marked di�erence between the displacements of the tensionless and the
conventional foundation models.
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Fig. 13. Deformed pro®les of the plate for di�erent load positions along the x axis (yp � 0).

2098 A.R.D. Silva et al. / International Journal of Solids and Structures 38 (2001) 2083±2100



References

Akbarov, S.D., Kocat�urk, T., 1997. On the bending problems of anisotropic (orthotropic) plates resting on elastic foundations that

react in compression only. Int. J. Solids Struct. 34, 3673±3689.

Ascione, L., Grimaldi, A., 1984. Unilateral contact between a plate and an elastic foundation. Meccanica 19, 223±233.

Ascione, L., Olivito, R.S., 1985. Unbonded contact of a Mindlin plate on an elastic half-space. Meccanica 20, 49±58.

B�jorkman, C.G., Klarbring, A., Sj�odin, B., Larsson, T., R�onnqvist, M., 1995. Sequential quadratic programming for non-linear elastic

contact problems. Int. J. Num. Meth. Engng. 38, 137±165.

Celep, Z., 1988. Rectangular plates resting on tensionless elastic foundation. J. Engng. Mech. 114, 2083±2092.

Celep, Z., Turhan, D., Al-Zaid, R.Z., 1988. Contact between a circular plate and a tensionless edge support. Int. J. Mech. Sci. 30, 733±

741.

Chand, R., Haug, E.J., Rim, K., 1976. Analysis of unbonded contact problems by means of quadratic programming. J. Opt. Theor.

Appl. 20, 171±189.

Conry, T.F., Seireg, A., 1971. A mathematical programming method for design of elastic bodies in contact. ASME J. Appl. Mech. 52,

387±392.

Cottle, R.W., Dantzig, G.B., 1968. Complementary pivot theory of mathematical programming. Lin. Algeb. Appl. 1, 103±125.

Fletcher, R., 1981. Practical Methods of Optimization. Wiley, New York.

Fig. 14. Elastic foundation displacement for di�erent load locations.

A.R.D. Silva et al. / International Journal of Solids and Structures 38 (2001) 2083±2100 2099



Gladwell, G.M.L., Iyer, K.R.P., 1974. Unbonded contact between a circular plate and an elastic half-space. J. Elasticity 4, 115±130.

Gorbunov-Possadov, M.I., Serebrjanyi, R.V., 1961. Design of structures on elastic foundation. In: Proceedings of International

Conference in Soil Mechanics Foundation Engineering, vol. 1, pp. 643±648.

Hu, C., Hartley, G.A., 1994. Analysis of a thin plate on an elastic half-space. Comput. and Struct. 52, 227±235.

Joo, J.W., Kwak, B.M., 1986. Analysis and applications of elasto-plastic contact problems considering large deformation. Comput.

and Struct. 24 (6), 953±961.

Katsikadelis, J.T., Kallivokas, L.F., 1986. Clamped plates on Pasternak-type elastic foundation by the boundary element method.

ASME J. Appl. Mech. 53, 909±917.

Lemke, C.E., 1968. On Complementary Pivot Theory. In: Dantzig, G.B., Yenott, A.F. (Eds.), Mathematics of Decision Sciences, pp.

95±114.

Li, H., Dempsey, J.P., 1988. Unbonded contact of a square plate on an elastic half-space or a Winkler foundation. ASME J. Appl.

Mech. 55, 430±436.

Luenberger, D.G., 1973. Introduction to Linear and Nonlinear Programming. Addison-Wesley, New York.

Puttonen, J., Varpasuo, P., 1986. Boundary element analysis of a plate on elastic foundations. Int. J. Num. Meth. Engng. 23, 287±303.

Rajapakse, R.K.N.D., Selvadurai, A.P.S, 1986. On the performance of Mindlin plate elements in modeling plate-elastic medium

interaction: a comparative study. Int. J. Num. Meth. Engng. 23, 1229±1244.

Silveira, R.A.M., Goncßalves, P.B., 1993. Nonlinear analysis of beam-columns on unilateral elastic foundations. In: Proceedings of the

XIV Latin American Congress of Computational Methods in Engineering (XIV CILAMCE), vol. 1, pp. 410±419 (in Portuguese).

Silveira, R.A.M., 1995. Analysis of slender structural elements under unilateral contact constraints, D.Sc. Thesis, Catholic University,

PUC-Rio (in Portuguese).

Silveira, R.A.M., Goncßalves, P. B., 1997. Stability of arches and beams under unilateral constraints, In: Aliabadi, M.H., Samartin, A.

(Eds.) Computational Methods in Contact Mechanics III. Computational Mechanics Publications, Southampton, UK, pp. 311±

320.

Svec, O.J., 1974. The unbonded contact problem of a plate on the elastic half space. Comp. Meth. Appl. Mech. Engng., 105±113.

Svec, O.J., McNeice, G.M., 1972. Finite element analysis of ®nite sized plates bonded to an elastic half-space. Comput. Meth. Appl.

Mech. Engng. 1, 265±277.

Weitsman, Y., 1969. On the unbonded contact between plates and an elastic half-space. ASME J. Appl. Mech. 36, 198±202.

Weitsman, Y., 1970. On foundations that react on compression only. ASME J. Appl. Mech. 37, 1019±1030.

2100 A.R.D. Silva et al. / International Journal of Solids and Structures 38 (2001) 2083±2100


