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Abstract

A numerical methodology for analysis of plates resting on tensionless elastic foundations, described either by the
Winkler model or as an elastic half-space, is presented in this paper. The contact surface is assumed unbonded and
frictionless. The finite element method is used to discretize the plate and foundation. To overcome the difficulties in
solving the plate—foundation equilibrium equations together with the inequality constraints due to the frictionless
unilateral contact condition, a variational formulation equivalent to these equations is presented from which three
alternative linear complementary problems (LCP) are derived and solved by Lemke’s complementary pivoting algo-
rithm. In the first formulation, the LCP variables are the plate displacements and the elastic foundation reaction, in the
second, the LCP is derived in terms of the elastic foundation reaction and, in the third formulation, the variables are the
elastic foundation displacements and the gap between the bodies. Once the LCP is solved the no-contact regions where
the plate lifts up away from the foundation and the sub-grade reaction, as well as the plate displacements and stresses,
can be easily obtained. The methodology is illustrated by three examples and the results are compared with existing
analytical and numerical results found in the literature. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

This paper presents a numerical methodology for estimating the structural behavior of plates resting on
tensionless elastic foundations. The analyses of plates on elastic foundations have been motivated by the
need in engineering to design, for example, mat and raft foundations, pavement slabs of roads and airfield,
floor systems of industrial yards and flexible column footings. These problems are usually analyzed by
assuming that the foundation reacts in compression as well as in tension. However, in many practical
situations, this assumption is questionable. Some supporting media cannot sometimes provide tensile re-
action and, under certain conditions, some portions of the plate may lift-off. This is, for example, the case of
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plates resting on soils lacking both adhesive and cohesive properties. In these circumstances, if the uni-
lateral character of the foundation is not taken into account, the engineer may incur considerable error, as
shown in this paper.

The unbonded frictionless contact problem of plates resting on a tensionless foundation is complicated
because the location and extent of the contact regions are not known at the outset. Since the stresses and
deformations of the plate and foundation depend on the contact area and therefore on its unknown
boundaries, these boundaries are, along with other mechanical quantities, part of the solution, being the
primary unknowns of the problem. So, even for cases involving linear foundation models and linear plate
theories, the problem is non-linear by virtue of unilateral constraints and therefore needs to be solved it-
eratively.

A critical step in the analysis of contact problems is the selection of a numerical methodology to deal
with unilateral contact constraints. Basically there are three major numerical approaches for this problem,
namely the Lagrange multiplier method, the penalty method and mathematical programming methods.
This last alternative enables one to solve the contact problem by directly minimizing the potential energy
containing explicitly moving boundary parameters and the associated inequality constraints and thus
maintaining the original mathematical characteristics of the problem. Some of the optimization’s tech-
niques used for the contact problem are: linear and quadratic programming, recursive quadratic pro-
gramming or, alternatively, methods for the solution of linear complementary problems such as Lemke’s or
Dantzig’s algorithms.

The bending of plates resting on elastic foundations has been the subject of numerous investigations in
the past. The first attempts to solve the problem of a plate on tensionless foundation include, among other,
the works of Weitsman (1969, 1970). These works were followed by the contributions by Conry and Seireg
(1971), Svec and McNeice (1972) and Svec (1974). Gladwell and Iyer (1974) studied the frictionless uni-
lateral contact problem between an infinite half-space and a circular plate, subjected to its own weight plus
a distributed load on a central circular area. Chand et al. (1976) formulated the unilateral contact problem
between two elastic bodies as a quadratic programming problem and showed that the solution of a contact
problem, if feasible, is unique and can be easily found by the modified simplex method of quadratic
programming. Variational formulations for the solution of unilateral contact problems were discussed by
Ascione and Grimaldi (1984) and results for a circular plate were presented. In one of the formulations
proposed in this paper they arrive, after using the FEM to discretize the plate and foundation and Kuhn—
Tucker conditions (Luenberger, 1973), at a linear complementary problem (LCP) which is solved through
the use of Dantzig’s algorithms (Cottle and Dantzig, 1968). Ascione and Olivito (1985) presented a for-
mulation based on the penalty method to solve the unilateral contact problem between a rectangular plate
and an infinite half-space. Rajapakse and Selvadurai (1986) made a comparative study on the efficiency of
some plate finite elements in the analysis of plates resting on an infinite half-space.

In the eighties, works employing the boundary element method (BEM) for the analysis of contact
problems began to appear. Puttonen and Varpasuo (1986) examined the applicability of the BEM to the
analysis of plates on a Winkler or Pasternak foundation and Katsikadelis and Kallivokas (1986) developed
a procedure for the analysis of slender plates submitted to different loading conditions in contact with a
Pasternak foundation. More recently, Hu and Hartley (1994) used the BEM to analyze the behavior of thin
plates on an elastic half-space.

Meanwhile, Li and Dempsey (1988) presented a solution for the frictionless unilateral contact problem
between a square plate subjected to a vertical load and an infinite half-space or a Winkler foundation. Also
in 1988, two analytical works on the frictionless unilateral contact problem appeared. In one of them Celep
(1988), using Galerkin’s method, studied the behavior of rectangular plates submitted to concentrated and
distributed loads in contact with a frictionless and tensionless Winkler foundation. In the other Celep et al.
(1988), analyzed the unilateral contact problem between a circular plate and an elastic foundation con-
stituted by discreet springs, using Ritz’s method.
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More modern attempts to solve contact problems include the works of Bjorkman et al. (1995), who used
sequential quadratic programming (SQP) for the study of geometrically non-linear frictionless contact
problems, and Silveira and Gongalves (1997), who presented a numerical methodology for the geometri-
cally non-linear analysis of slender structural elements with unilateral constraints combining a linear
complementary problem formulation with arc-length techniques. Also recently, Akbarov and Kocatiirk
(1997) used the Galerkin’s method to study the bending of anisotropic plates on a tensionless foundation.

The present work adds a new contribution to this field by providing some alternative formulations for
general-purpose analysis of plates resting unilaterally on an elastic foundation. In this analysis, the plate
and the foundation are treated as two separated elastic bodies in unilateral contact at the interface. The
plate is described either by Kirchhoff or Reissner—Mindlin’s plate theory and the foundation is considered
as a Winkler foundation or an elastic half-space. The plate and the foundation are discretized using the
finite element method. To overcome the difficulties in solving the plate—foundation equilibrium equations
together with the inequality constraints due to the frictionless unilateral contact condition, a variational
formulation equivalent to these equations is presented from which three alternative LCP are derived and
solved by Lemke’s complementary pivoting algorithm. In the first formulation, the LCP variables are the
plate displacements and the elastic foundation reaction, in the second, the LCP is derived in terms of the
elastic foundation reaction and, in the third formulation, the variables are the elastic foundation dis-
placements and the gap between the bodies. Once the LCP is solved the no-contact regions where the plate
lifts up away from the foundation and the subgrade reaction, as well as the plate displacements and stresses,
can be easily obtained. Numerical examples involving plates under different loading conditions are pre-
sented and the results are compared with existing results to demonstrate the validity and effectiveness of the
formulations derived in this paper.

2. Problem formulation

Consider a structural system consisting of an elastic plate and a tensionless elastic foundation. The plate
is defined as a solid elastic continuum which occupies a domain V, limited by three different regular sur-
faces: S., Sy and St, where S, is the area where displacements are prescribed, S; is the area where the surface
forces are prescribed and S. is the surface where contact may occur. For the plate, the equilibrium
equations, the strain—displacement relations and the constitutive equations are given, respectively, by

;; =0, (1)
&jj = %(%‘J + ”j,i)? (2)
i = Cijki &, (3)

where o;; are the Cauchy stress components, ¢; are the infinitesimal strain components, u; are the dis-
placements and Cj;; are the material parameters. In this paper the plate is analyzed by either the Kirchhoff
or Reissner—Mindlin plate theory.

The elastic foundation is described by

Iy = Cbub (4)

where u, and r, are the displacement and reaction of the elastic foundation, respectively, and C, is the
foundation modulus.
For the structural system studied here, the following boundary conditions must be satisfied.

u; =1u; onS,, (5)
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E = 0o;h;  On Sf, (6)

¢=uy—u; =0 onS, (7)

where, u; is the deflection of the plate orthogonal to the foundation and ¢ is the gap between the plate and
the foundation in the potential contact region S.. Inequality (7) is the compatibility condition that rep-
resents the impenetrability between the bodies. When ¢ = 0, there is contact and r, > 0. On the other hand,
when there is no contact, ¢ > 0 and r, = 0.

So, the conditions that define in a complete way the contact as being unilateral are given by the in-
equality

1 =0 (8)

and, the following complementarity relationship between ¢ and r,
/ rppdS. = 0. 9)
Se

In these equations compressive reactions are assumed to be positive.

The problem unknowns can be obtained by solving Eq. (1) together with boundary conditions (5) and
(6), inequalities (7) and (8) and the complementarity condition (9). The non-linearity due to the unilateral
constraints makes it difficult to solve the contact problem directly. For this reason, an equivalent mini-
mization problem is formulated which is particularly suitable for numerical analysis. It can be shown that
the optimization’s problem (Joo and Kwak, 1986; Silveira, 1995)

Min : J (u, up) (10)
st.:—p<0, on S, (11)
where,
1 1 )
J== Ci/'klgklgij dv += CbudeC — F;Mi de (12)
2. )y 2 Se S

is equivalent to the contact problem described above.
Based on these equations, three alternative LCP are proposed for the numerical analysis of plates resting
on a tensionless foundation in the following sections.

2.1. Formulation 1

According to Ascione and Grimaldi (1984), restrictions (7)—(9) can be substituted by the variational
inequality

/ gpdS, =0, (13)
Se
where ¢ belongs to the positive cone K, in which the admissible reactions ry, are the elements
K= {rb € Y',/ rowdS. =20, VYwe Y, w> 0} (14)
Se

and Y and Y are the vectorial spaces that contain the solutions to r, and ¢, respectively. The comple-
mentary condition (9) is satisfied when ¢ = ry,.
Then, the contact constraint can be eliminated from the analysis, by writing
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1 1
J] :E/Ciiklsklgi/dl/—i_z/ Cbu%dSC—/rbq)dSc—/P}u,«de. (15)
V

Se Se S

The first variation of Jy, after eliminating u, from the previous equation by way of relation (7), is given
by the following variational inequality (see Eq. (13)):

oy = / Ci/k18k158z/dV+/ Co( + u) dudsS. +/ [Co(@ +u) —10]0pdS, —/ @ drydS.
14 Se Se Se

- / Fdu; dS; <0. (16)

S¢

Elimination of ¢ from the Eq. (16), by use of Egs. (4) and (7), leads to a variational inequality in terms of
u, e, rp, only, which corresponds to the first variation of the following integral:

1 1
Ji :—/c,-,k,sk,s,-,-dV—— Dbr§d50+/ rbudSC—/F,-u,-de, (17)
2 Jy ) 2 Se Se S

where Dy = C,!. The variables u, e, r, must be obtained so that the first variation of the functional J;
satisfies the inequality dJ (u, 1) <O0.

Now, using the finite element method, one can assume that, for a generic plate element, the displacement
field within the element, u, is related to the nodal displacements u by

u = Nu, (18)

where N is the usual interpolation functions matrix. For a generic elastic foundation element, the com-
pressive reaction is related to its nodal values by

Iy = Hbrb, (19)

where Hy, is the matrix that contains the interpolation functions that describe the behavior of the elastic
base.

From these definitions and adding the contributions of each finite element, one arrives at the discretized
functional of the problem in the global form

-1 1
J) = EUTKu - E’”ETi’b +rfAu—u'R (20)

where R is the nodal load vector, K is the stiffness matrix, A is the joining matrix between the structure and
the elastic foundation, defined by

A:Z/S H/NdS, (21)

and T is the flexibility matrix of the elastic foundation which can be written as

T= Z A H!D,H, dSs.. (22)

Here m. is the number of elements of the contact region.
After the first variation of Eq. (20), one arrives at the following LCP in terms of the plate displacements
and foundation reaction (Ascione and Grimaldi, 1984; Silveira, 1995):

Ku+ A" —R=0, (23)

Au — Tr, <0, (24a)
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>0, (24b)

(Au—Try)"r, = 0. (24c)

The solution of the Eq. (23), considering the constraints (24), can be achieved through the use of
mathematical programming methods, in particular, pivoting techniques developed for complementary
problems (Cottle and Dantzig, 1968; Lemke, 1968). However, first it is necessary to reduce the previous
relations to a standard LCP form. This can be obtained through the use of the following definitions:

u=u"4+u; z=Trn—Au, z=Ku+A'r,—R; z;=—2,, (25)

where ut > 0, u~ > 0 are the positive and negative parts of the vector u (Fletcher, 1981).
Using these new variables, it is possible to write Egs. (23) and 24(a—c) in the following form:

w = q+ Mz, (26)
w =0, (27a)
220, (27b)
wiz=0 (27¢)
with
K -K A" -R ut 2
M=|-K K -A"|, q={ R }, z=<qu jew=112; ;. (28)
-A A T 0 Iy z

Eq. (26) and constraints (27) correspond to a standard linear complementary problem which is solved
here by Lemke’s algorithm.

2.2. Formulation 2

If the stiffness matrix in Eq. (23) is positive definite, it is possible to establish the following relationship
between u and ry:

u=K'(R—A"h). (29)

Substituting Eq. (29) in Eq. (23), one arrives at a variational expression that is a function of the nodal
values of the base reaction r, only

J = Pry+rtH—s. (30)
Here P is a symmetric positive definite matrix, H is a vector and s is a constant which are defined as
P=AK'A"+T, H=AK 'R, s=IR'K'R. (31)

Eq. (30), with the foundation reaction constraint condition, characterizes a quadratic programming
problem. Again one can derive from this formulation a standard LCP similar to the one described by Egs.
(26) and (27), considering now, M = P, ¢ = —H, z = 1, and w as the Lagrange multiplier introduced in the
analysis to represent the impenetrability condition between the bodies. After the calculation of ry,, u can be
obtained from Eq. (29).



A.R.D. Silva et al. | International Journal of Solids and Structures 38 (2001) 2083-2100 2089

2.3. Formulation 3

In this third formulation the LCP is written in terms of the nodal variables in the contact region, that is,
the base displacements and the gap between the two bodies.

Discretizing Eq. (12) by the use of the FEM and adding the contributions of each finite element, one
arrives at the discretized functional of the problem in the global form

Ji = lu'Ku + lu/Kyu, —u'R. (32)
The first variation of Eq. (32) with respect to the nodal values of u and uy, leads to the equilibrium
equation
Ku + K,u,= R. (33)
After some algebraic manipulation, Eq. (33) can be rewritten as
w =q+ Mz, (34)

where M = (K +K,) 'K; q= (K+Ky) 'R; z=u, —u and w = u,.
Eq. (34) together with the constraints

w =0, (35a)
=0, (35b)
wz=0, (35¢)

defines again a standard LCP.

It should be pointed out that the order of the matrices and vectors in formulations 2 and 3 are practically
the same. But, in order to obtain Egs. (34) and (35) substructuring techniques and static condensation are
necessary.

3. Examples

In this section three examples are presented in order to verify the efficiency and reliability of the for-
mulations developed in this work.

3.1. Supported continuous beam on a Winkler tensionless elastic foundation

The first numerical example, used to test formulations 1-3, is shown in Fig. 1(a). It consists of a simply
supported beam, modeled as a long plate resting on a Winkler foundation, and subjected to concentrated
moments (M = 100) on the edges. Due to the loading conditions, a non-contact region will appear near the
right edge.

To model the structural system (plate and foundation) 20 isoparametric finite elements with eight nodes
each were used as shown in Fig. 1(b). The plate elements were derived from the Reissner—Mindlin theory.
The elastic foundation reaction is interpolated using the nodal points of the vertices of the element. The
beam dimensions are: a = 10, b = 1.0 and ¢t = 0.4, the Young’s modulus and Poisson’s ratio of the plate
material are, respectively, 10° and 0.0 and, the foundation stiffness parameter K is taken as 71.68 (flexible
foundation).

Figs. 2 and 3 show, respectively, the variation of the deflection and base reaction along the beam axis.
As observed, all formulations give practically the same results and they are in good agreement with the
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Fig. 1. (a) Continuum plate on Winkler tensionless elastic foundation and (b) structural system model.
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Fig. 2. Deformed shape of the plate.

analytical modal solution obtained by Silveira and Gongalves (1993) specifically for this problem. To
compare the efficiency of the proposed formulations, the computing time for each LCP is shown in Table 1
together with the order of matrix M in each LCP. Clearly formulations 2 and 3 are more efficient in terms of
computing time than formulation (1), having approximately the same performance. One of the main
reasons, as observed in Table 1, is the order of the matrices in each formulation. In the other numerical
experiments presented in this paper, similar results were observed. On the other hand the second formu-
lation seems to be more robust numerically and no numerical problem was experienced in this work when
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Fig. 3. Contact pressure distribution.

Table 1
Computing times for solving each LCP and matrix size
Formulation 1 Formulation 2 Formulation 3
Time (s) 126 9 3
Order of matrix M 632 x 632 38 x 38 38 x 38

solving PLC-2 by Lemke’s algorithm. In the other two cases in some experiments numerical difficulties were
observed. These difficulties were mainly due to the sensitivity of Lemke’s algorithm to the relative mag-
nitude of the elements of matrix M. A possible solution is to choose the problems units in such a way that
all elements in the LCP are of comparable magnitude.

The influence of the foundation stiffness parameter K on the behaviour of the plate is now analyzed. In
Fig. 4 the deflection along the beam axis is given for different values of the foundation modulus. As one can
observe, the area of contact region (and the corresponding displacements) decreases steadily as K increases,
while the displacements of the non-contact region increases. The dependence of the contact area on the
foundation stiffness is one of the main characteristics of tensionless foundation as compared with the
conventional foundation.

Finally, Fig. 5 compares the results for the lateral deflection of a plate on a foundation with K = 7168
with those obtained for the same plate without foundation and with a foundation that reacts in com-
pression as well as in tension. These results show clearly that there is for relatively stiff foundations a
marked difference between the displacements of the tensionless and the conventional foundation models. As
a consequence, considerable error may result if the unilateral character of the foundation is not taken into
account in the analysis.

3.2. Slender plate on an elastic half-space
In this example a Kirchhoff square plate freely resting on an infinite half-space is considered. The

structural model is shown in Fig. 6(a). For comparison purposes, in the presentation of the results, the
following foundation/plate relative stiffness parameter
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Fig. 4. Deformed profiles of the plate for several values of the foundation stiffness K.
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Fig. 5. Plate deformation pattern (K = 7168).
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defined by Gorbunov-Possadov and Serebrjanyi (1961) for a rectangular plate and used by Hu and Hartley
(1994), is used here.

According to these authors, a square plate can be considered rigid when y < 8.

The associated displacement parameter given by these authors for a rigid square plate is
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Fig. 6. (a) Slender plate on an elastic half-space and (b) system structural model.

0.913(1 — )P
W= (37)

where P is the magnitude of the total vertical load.

In this example, the structural system is modeled with 36 finite elements as shown in Fig. 6(b). Due to
symmetry only 1/4 of the plate is analyzed. The value of the Poisson’s ratio for both plate and the half-space
is taken as 0.15.

First a square plate subjected to a uniformly distributed load ¢ is analyzed and the results are compared
with those obtained by Hu and Hartley (1994) using the boundary element method. In this case P in Eq.
(37) is the resultant of the distributed load (4a*q). In Fig. 7 the variation of the deflection of the plate along
the symmetry axis x is shown for selected values of the stiffness parameter y. Here the deflection is nor-
malized with respect to W, and the coordinate x is divided by a. As observed by Hu and Hartley (1994), the
plate displacement decreases as y decreases and approaches a straight line for low values of y (nearly rigid
plate or soft foundation) and the plate moves vertically as a rigid body with w practically equal to the
reference value W,. For stiffer foundations or more flexible plates (large y) the plate deforms noticeably. For
any value of y the plate is completely in contact with the elastic foundation and the displacement at the
boundary (x/a = £1) tends to the reference value W,. The corresponding distribution of the contact
pressure along the plate central axis for each value of the stiffness parameter 7y is shown in Fig. 8. Finally in
Table 2 the value of the moment M, in the plate center is presented for selected values of y. In all the cases
analyzed here the results compare well with those obtain by Hu and Hartley (1994).

In Figs. 9 and 10 and in Table 3, the results for central deflection, base reaction and moment M, along
the x axis on the plate edge are shown for increasing values of the stiffness parameter y for a plate under a
concentrated load acting on the center of the plate. The results are for the central axis of the plate. These
results are again compared with the numerical results obtained by Hu and Hartley (1994).

As observed if Fig. 10, y = 0.03 correspond practically to a rigid plate. As 7y increases, the base reaction
increases in the central area and when y approaches 300 the plate edge loses contact with the foundation.



2094 A.R.D. Silva et al. | International Journal of Solids and Structures 38 (2001) 2083-2100

I (N N SN NN N B
Present Work Hu and Hartley (1994)
0.63 — ® 7=3016
Oy =3016
0.75 — W y=3016
O v=8
0.88
£ 1.00
=
1.13
1.25
1.38 — —
150 T T T T T ]
-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00
x/a
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Fig. 8. Distribution of the foundation reaction — uniformly distributed load.

For higher values of y the contact region decreases steadily and, since the applied load remains the same, in
order to maintain the equilibrium, the foundation reaction increases substantially. At the same time, the
uplift along the edges becomes more pronounced. Again the results illustrates the marked difference be-
tween the bonded and unbonded foundation models.
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Table 2
Moments in the plate center — distributed load ¢
y M, /P
Present work Hu and Hartley (1994)
3.016 0.0221 0.0215
30.16 0.0147 0.0143
3016 0.0002 0.0002
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Fig. 9. Displacement profiles for different values of stiffness parameter y. Plate under concentrated load.

3.3. Rectangular plates resting on Winkler tensionless elastic foundation

Fig. 11(a) shows the geometry of the plate used in this example. It is a square plate of flexural stiffness D
with free boundaries and in contact with a tensionless Winkler foundation of stiffness K. The plate is
submitted to a concentrated load acting at a generic point (X, Y,). For comparison purposes, the following
dimensionless quantities are used in the example:

K? P, X, Y,
k_37 p_Ba xp_gﬂ yp_; (38)
The results in Figs. 12 and 13 were obtained using the finite element mesh (half of the plate, only)
presented in Fig. 11(b). Fifty isoparametric finite elements with eight nodal points and Mindlin’s plate
theory were used in the analysis. In Fig. 11(b) are also shown the adopted boundary conditions. These
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Fig. 10. Base reaction — concentrated load.
Table 3
Moment M, Acting on the plate edge (x axis) — concentrated load
b M,/P
Present work Hu and Hartley (1994)
3.016 0.073 0.075
30.16 0.042 0.043
3016 0.012 0.012

results are compared with those obtained by Celep (1988) using the Galerkin method. The plate geometry
and material properties are identical to those given by Celep: K = 1000 and v = 0.25 and, also, E = 10,
t =0.018 and 2a = 1.0.

Fig. 12 shows the curves that separates the contact and the non-contact regions of the plate subjected to
a concentrated load at different x,, positions and y, = 0.0 while Fig. 13 shows the variation of the deflection
of the plate along the x axis for the same load positions. When the load is close to the center of the plate
(x, = 0) the contact curve is practically a circle having a non-dimensional radius » = 0.48, that is close to
the result found by Celep and, also by Akbarov and Kocatiirk (1997) (r = 0.49). It was also found for the
non-dimensional relationship k'/4» = 2.72. This is also close to the value obtained by Celep (k'/*r = 2.76).
With the Winkler foundation replaced by an elastic half space, Weitsman (1970) obtained for a weightless
plate of infinite extent k'/4r = 2.85.

As observed in Figs. 12 and 14(a—d), the contact curve experiences a translation as the load moves away
from the center of the plate along the x axis. Close to the edge of the plate, the contact area changes its
shape and decreases rapidly, while the lift-off displacements increase at a similar rate.
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Fig. 11. (a) Rectangular plates resting on tensionless elastic foundation and (b) structural system model.
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Fig. 12. Boundary curves that separate the contact and non-contact regions.
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Fig. 13. Deformed profiles of the plate for different load positions along the x axis (y;, = 0).

4. Conclusions

The equilibrium analysis of the plates with unilateral contact constraints was studied in this paper by the
use of the finite element method together with mathematical programming techniques. The use of math-
ematical programming techniques seems to be an efficient form of treatment of the unilateral constraints,
since it allows the contact problem to be treated directly as a minimization problem involving the energy
functional and the original variables of the problem with inequality constraints. Based on this variational
formulation, three alternative linear complementary problems were formulated for the numerical analysis
of plates resting on an elastic foundation: in the first formulation, the LCP variables are the plate dis-
placements and the elastic foundation reaction, in the second, the LCP is written in terms of the elastic
foundation reaction and, in the third formulation, the variables are the elastic foundation displacements
and the gap between the bodies. These LCP were solved by the use of Lemke’s algorithm. A comprehensive
parametric study of the dominant parameters (foundation stiffness, sub-grade reaction, contact region, etc.)
was carried out through numerical examples. The obtained results compare well with some analytical and
numerical results found in literature. These examples validate the formulations and proposed numerical
methodologies and clarifies the main characteristics of this type of structural problem. These results also
show that for this class of problems considerable error may result if the unilateral character of the foun-
dation is not taken into account in the analysis. When a partial contact occurs, the displacements in the lift-
off region are larger in this case, while, in order to maintain equilibrium, the reaction in the contact region
increases substantially, causing a marked difference between the displacements of the tensionless and the
conventional foundation models.
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(c)x,=0.8 (d) x,=0.9

Fig. 14. Elastic foundation displacement for different load locations.
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